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Abstract

RNA interference (RNAi) has considerable promise for developing novel pest control techniques, especially because of the
threat of the development of resistance against current strategies. For this purpose, the key is to select pest control genes
with the greatest potential for developing effective pest control treatments. The present study demonstrated that the 3-
hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase; HMGR) gene is a potential target for insect control
using RNAi. HMGR is a key enzyme in the mevalonate pathway in insects. A complete cDNA encoding full length HMGR
(encoding an 837-aa protein) was cloned from Helicoverpa armigera (Lepidoptera: Noctuidae). The HaHMGR (H. armigera
HMGR) knockdown using systemic RNAi in vivo inhibited the fecundity of the females, effectively inhibited ovipostion, and
significantly reduced vitellogenin (Vg) mRNA levels. Moreover, the oviposition rate of the female moths was reduced by 98%
by silencing HaHMGR compared to the control groups. One-pair experiments showed that both the proportions of valid
mating and fecundity were zero. Furthermore, the HaHMGR-silenced females failed to lay eggs (approximate 99% decrease
in oviposition) in the semi-field cage performance. The present study demonstrated the potential implications for
developing novel pest management strategies using HaHMGR RNAi in the control of H. armigera and other insect pests.
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Introduction

RNA interference (RNAi), which was first characterized in

Caenorhabditis elegans [1], has been developed as an effective gene-

silencing tool in a wide variety of organisms [2]. Double-stranded

RNA (dsRNA)-mediated RNAi has emerged as one of the most

powerful strategies for the rapid analysis of gene function and has

considerable potential for the development of applications for

insect pest control [3,4,5,6]. In recent years, increasing amounts of

genome and transcriptome sequencing data of important pest

species have been made available online. Genetic function

determination and novel control method developments by RNA

interference could be reasonably combined for the integrated pest

management (IPM) of important insect pests in the near future to

address the continuous threat of resistance development against

current pest management techniques [7,8]. The achievement of

this objective can be accelerated by targeting pest control genes.

For example, the key candidate genes in the pathways that

regulate insect development and reproduction are promising

targets for the implementation of pest control using RNAi

technology.

HMG-CoA reductase (HMGR) is one of the current candidate

genes for this potential application. HMGR is the key regulatory

enzyme in the mevalonate pathway, which controls a rate-limiting

step in the conversion of HMG-CoA into mevalonate, a precursor

for the synthesis of cholesterol in vertebrates [9]. However, insects

do not synthesize cholesterol through the mevalonate pathway

[10]. Instead, insects produce juvenile hormones (JHs) that

regulate development and reproduction in most insect species

[11]. Over the past decade, researchers have discovered that

HMGR may have various essential roles in the regulation of

embryonic development, induction of vitellogenin synthesis and

pheromone production in insects. For example, the regulatory role

of HMGR has been widely investigated in cockroach species,

including Blattella germanica and Diploptera punctata [12,13]. Studies

have shown that inhibitors of HMGR can prevent the synthesis of

vitellogenin [14,15] and can also reduce the fecundity of B.

germanica. However, HMGR should not be considered the rate-

limiting enzyme for JH synthesis by the corpora allata in D.

punctata [15,16]. An inhibitor of HMGR can inhibit sex

pheromone biosynthesis in Bombyx mori and Spodoptera litura

[17,18]. HMGR regulates the maintenance of homeostasis

between the de novo produced and sequestered intermediates of

iridoid metabolism in the leaf beetle [19]. In addition, HMGR can

mediate the transfer of origin germ cells in Drosophila melanogaster

[20,21]. Other studies using in situ hybridization have revealed that

HMGR is highly expressed in specialized cells of the male anterior

midgut where monoterpenoid aggregation pheromones are

synthesized de novo [9].
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The HMGR gene has been cloned and identified from many

insect species across several insect orders, including Agrotis ipsilon

[22], B. mori [23], Samia cynthia ricini [24], B. germanica [25], Phaedon

cochleariae [19], Dendroctonus jeffreyi [26] and Ips pini [27]. In

addition, molecular characterizations of HMGR have been

accomplished in D. melanogaster [28], B. mori [23], A. ipsilon [22],

and B. germanica [25], which have initiated gene function research

along with potential applications for RNAi.

On the basis of sequence homologies of the genes deposited in

GenBank, we recently identified a putative HMGR gene in the

cotton bollworm, H. armigera, which is one of the major insect pests

in the world. Despite the lack of a sequenced genome, the

physiology, metabolism and reproduction of H. armigera have been

studied intensively because of its devastating nature. Here, we

examined the role of the HaHMGR gene in the reproduction of

this moth using RNAi. Knockdown of the HaHMGR gene by

injecting HaHMGR dsRNA into 2-day-old female pupae influ-

enced the mating of the adults and significantly inhibited

oviposition. This finding may have important implications for

the development of effective pest control against this moth and

other insect pests.

Materials and Methods

Insects
H. armigera were reared on an artificial diet in regulated climatic

chambers (2761uC, RH of 40610%, and photoperiod of

14L:10D). The adults were maintained in rearing cages

(40 cm630 cm630 cm) and fed with a 10% (sugar/water) sucrose

solution until their use in the experiments.

Cloning of the HaHMGR and Vg Genes
Fat bodies were dissected from 1-day-old female adults and then

immediately frozen in liquid nitrogen. Total RNA was isolated

from the fat bodies using Trizol (Invitrogen, Carlsbad, CA). First-

strand cDNA synthesis was performed using the RevertAid First

Strand cDNA Synthesis Kit (Fermentas, EU) with oligo(dT)

primers. Degenerate primers (HMGR-F/HMGR-R) were de-

signed for the amplification of a specific fragment of HMGR

(Table 1). PCR amplifications were performed in 25 ml volumes

containing 1 ml of primers, 2.5 ml of 106 buffer, 2 ml of each

dNTP, 0.15 ml of Ex Taq (TaKaRa, Dalian, China) and 1 ml of

cDNA template, and the following thermocycler protocol was

used: 35 cycles of 95uC for 30 sec, 59uC for 30 sec, and 72uC for

3 min. Gene-specific primers (HMGR-F3-1, HMGR-F3-2, R3-1

and R3-2) were designed for 39-rapid amplification of cDNA ends

(39-RACE) (Table 1). The outer PCR protocol consisted of 20

cycles of 95uC for 30 sec, 58uC for 30 sec and 72uC for 1 min.

Table 1. PCR primers for HaHMGR cDNA cloning from Helicoverpa armigera.

Primer set Primer sequence

Degenerate primer (HMGR-F) 59-ATGAAAGTSTGGGGAGCYCACG-39

(HMGR-R) 59-TCACAAGGGCAGCCATTAG-39

(VG-F) 59-GGBAACYGAGCSADCAGCAG-39

(VG-R) 59-CCTGYACTGDTGGMCAGCC-39

39-RACE primer (HMGR-F3-1) 59-ATTGGCGGGAATAACGCTCACGC-39

(HMGR-F3-2) 59-TGGAGGGACTATCCTAACAGGCC-39

(R3-1) 59-GCTGTCAACGATACGCTACGTAACGGCATGACAGTGTTTTTTTTTTTTTTTTTTTTTTTT-39

(R3-2) 59-CGCTACGTAACGGCATGACAGTG-39

(VG-F3-1) 59- GTGAAATCTGCATCACCACCACCC -39

(VG-F3-2)59- CGGAGAAGGTTACAAGGTCCAAGC -39

59-RACE primer (F-5-1)59-CATGGCTACATGCTGACAGCCTA-39

(F-5-2) 59-CGCGGATCCACAGCCTACTGATGATCAGTCGATG-39

(HMGR-R5-1) 59- GGGCATCCTTAATACTCGCCAG-39

(HMGR-R5-2) 59-AGCGTACGAAGGTCATTATTACG-39

(VG-R5-1)59- AGCAGACCCTTGAGTAAGTTCTCG -39,

(VG-R5-2)59- GGACTGGGTTCTCCAACTTGG -39

Quantitative PCR (QActin-F)59-TCCAGCCCTCATTCTTGGGTAT-39

(QActin-R)59- CAAGTCCTTACGGATGTCAACA-39

(QHMGR-F)59- TACAGTAGGTGGAGGGAC-39

(QHMGR-R)59- ATCAAGGAGGCTAATCGGG-39

(QVG-F)59-CGGAGACAAGAAACAGAACAC-39

(QVG-R)59-AAGCAATAATGCGGACGAGAAT-39

RNAi (T7EGFP-F)59-TAATACGACTCACTATAGGGAGACCCTGAAGTTCATCTGCACC-39

(T7EGFP-R)59- TAATACGACTCACTATAGGGAGAGTGCTCAGGTAGTGGTTGTC-39

(T7HMGR-F)59-TAATACGACTCACTATAGGGAGATCCCTATGGCTACAACTGAAGG-39

(T7HMGR-R)59-TAATACGACTCACTATAGGGAGACCAGCCGATTTAAGCAC-39

doi:10.1371/journal.pone.0067732.t001

RNAi of the HMGR Gene in the Helicoverpa armigera

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e67732



The PCR product was used as the template for the inner primer

with the following protocol: 30 cycles at 95uC for 30 sec, 58uC for

30 sec, and 72uC for 1 min. The 59-RACE reactions were

performed using the 59-Full RACE kit (TaKaRa, Dalian, China).

The outer PCR protocol consisted of 20 cycles of 95uC for 30 sec,

55uC for 30 sec, and 72uC for 1 min. The PCR product was used

as the template for the inner primer, and the thermocycler

conditions were as follows: 30 cycles at 95uC for 30 sec, 58uC for

30 sec, and 72uC for 1 min.

To clone the H. armigera Vg gene, degenerate primers (VG-F

and VG-R) were designed (Table 1). PCR amplifications were

performed in 25 ml volumes containing 1 ml of primers, 2.5 ml of

106 buffer, 2 ml of each dNTP, 0.15 ml of Ex Taq (TaKaRa,

Dalian, China) and 1 ml of cDNA template. The following

thermocycler program was used: denaturation at 95uC for 30 sec

(2 min for only the first cycle), annealing at 55uC for 30 sec and

extension at 72uC for 5 min for 35 cycles. To obtain the complete

cDNA sequence of the Vg gene, a new set of gene-specific primers

(VG-F3-1, VG-F3-2, VG-F5-1 and VG-F5-2) matching the

primers in the 39- and 59-Full RACE kit (Takara, Dalian, China)

were designed (Table 1). The 39-RACE outer and inner PCR

reactions were carried out with 20 cycles at 95uC for 30 sec, 55uC
for 30 sec, and 72uC for 1 min followed by 30 cycles at 95uC for

30 sec, 60uC for 30 sec, and 72uC for 1 min. The 59-RACE outer

and inner PCR amplification conditions were the same as the 39-

RACE outer and inner protocols. All clones were sequenced by

Invitrogen (Shanghai, China).

Sequence Alignments and Comparisons
To compare the identified HaHMGR sequence (GenBank

accession no. GU584103) to other insect species, we used the

previously published HMGR amino acid sequences of the

following species: A. aegypti (XP_001659923), A. ipsilon (O76819),

A. grandis (AF162705), B. mori (NM_001099828), C. quinquefasciatus

(XM_001845655), D. jeffreyi (AF159136), D. melanogaster

(NM_170089), I. pini (AF304440), I. paraconfusus (AF071750), Apis

mellifera (BI503396), Bombus impatiens (XM_00349205), I. confuses

(FJ536869), Chrysomela populi (EF134409), P. cochleariae (EF134407),

Gastrophysa viridula (EF134408), S. cynthia ricini (DQ465407), and B.

germanica (P54960). Sequence alignments were carried out with

MEGA4 Molecular Evolutionary Genetics Analysis Software

Version 4.0 (Tokyo, Japan).

HaHMGR and Vg Quantitative real-time PCR (qPCR)
To determine the appropriate age for initiating RNAi silencing

of the target gene, we used qPCR to investigate the relative

expression of HaHMGR in female pupae from day 1 to day 9.

The same method was also used to assess the expression levels of

Vg in female pupae from day 1 to day 9.

Figure 1. Neighbor-joining phylogenetic tree of the amino acid sequences of HMGR by Molecular Evolutionary Genetics Analysis
Software Version 4.0 (MEGA4). The branches were statistically evaluated by bootstrap analysis. All sequences were from GenBank.
doi:10.1371/journal.pone.0067732.g001
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Total RNA was isolated using Trizol (Invitrogen, Carlsbad, CA)

following the manufacturer’s instructions, and it was suspended in

30 ml of RNase-free water. DNase I (Takara, Dalian, China) was

used to remove the residual genomic DNA. PrimeScript RT

Master Mix Perfect Real Time (Takara, Dalian, China) was used

to obtain the first-strand cDNA.

qPCR was used for the analysis of the relative expression by

iCycler iQ5 (Bio-Rad, Hercules, CA). Three sets of gene-specific

primers (QActin-F/QActin-R, QHMGR-F/QHMGR-R and

QVG-F/QVG-R) for qPCR were designed for the b-actin,

HaHMGR and Vg gene fragments (Table 1). The PCR protocol

consisted of 95uC for 30 sec followed by 40 cycles of 95uC for

5 sec and 60uC for 30 sec using SsoFastTM EvaGreenH Supermix

(Bio-Rad). The total reaction volume was 20 ml. All reactions were

performed in triplicate. The relative expression of HaHMGR

mRNA was compared using ANOVA and Tukey’s post-hoc test

for multiple comparisons.

Figure 2. The relative expression of Helicoverpa armigera HMGR (HaHMGR) and vitellogenin mRNA in female pupae. (A) The expression
pattern of HaHMGR at different ages (day 1 to day 9). (B) The expression pattern of vitellogenin at different ages (day 1 to day 9). The mean and SD
values were obtained using SPSS version 16.0. Values with the same letter are not significantly different at the P.0.05 level (ANOVA followed by
Tukey’s post-hoc test).
doi:10.1371/journal.pone.0067732.g002

RNAi of the HMGR Gene in the Helicoverpa armigera
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Preparation, Quantification and Purification of dsRNA
The dsRNAs prepared from different sections of the coding

region showed the same activity as the full-length dsRNA. A

randomly chosen section of the coding region of HaHMGR was

amplified from moth cDNA. A control fragment from EGFP was

amplified from the pBCMiLR-3xP3 EGFP-PL2 vector (kindly

provided by Dr. Handler, USDA). A T7 RNA polymerase

promoter was added to the EGFP and HaHMGR sequences using

PCR by adding the T7 promoter sequence at the 59 end of the

amplification primers (T7EGFP-F/T7EGFP-R or T7HMGR-F/

T7HMGR-R) (Table 1). The PCR products were excised from the

ethidium bromide-stained gel and purified using a DNA purifica-

tion kit (Axygen, Hangzhou, China). The dsRNA was synthesized

using the T7 RiboMAXTM Express RNAi System (Promega).

Samples were incubated at 37uC for 4 h. The nucleic acid was

then treated with RQ1 RNase-free DNase (Promega) to remove

Figure 3. The relative expression of Helicoverpa armigera HMGR (HaHMGR) and vitellogenin in H. armigera after injecting dsRNA. (A)
Histograms represent the expression of HaHMGR after injecting HaHMGR double-stranded RNA (dsHaHMGR). (B) The expression of vitellogenin after
injecting dsHaHMGR. The enhanced green fluorescent protein double-stranded RNA (dsEGFP) treatment group was used as a negative control, and
nuclease-free water was used as a blank control. Values with the same letter are not significantly different at the P.0.05 level (ANOVA followed by
Tukey’s post-hoc test).
doi:10.1371/journal.pone.0067732.g003
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the DNA template. The dsRNA was purified using the MEGA-

clearTM Kit (Ambion, Austin, USA). Formation of dsRNAs was

confirmed by running 1 ml of these reactions on a 1% agarose gel.

RNA Interference
A 1,176-bp fragment (dsHaHMGR) and a 520-bp fragment

(dsEGFP) were used to generate two different dsRNAs. One

microliter of dsHaHMGR (1 mg), 1 ml of dsEGFP (1 mg) or 1 ml of

nuclease-free water (blank control) was injected into the abdomen

of 2-day-old female pupa. To examine whether silencing of

HaHMGR gene influenced ovipostion, injected females were

subjected to an oviposition bioassay. Twenty females that were

either treated with dsRNA (dsHaHMGR or dsEGFP) or nuclease-

free water mated with untreated males in cages containing a 10%

sucrose (sugar/water) solution. The cage (40 cm630 cm630 cm)

experiments were performed in triplicate. The number of eggs laid

by each female was recorded.

To further determine the effect of RNA interference on mating,

fecundity, and larval emerging, one female treated with dsRNA

(dsHaHMGR or dsEGFP) was paired with an untreated male (1:1)

in a small cage (N = 30). Adult females were dissected and

examined for the presence of spermatophores to verify mating

status under the binocular microscope (Nikon, Japan). The

number of eggs and the number hatched larvae were recorded.

qPCR Analysis of HaHMGR and Vg Expression after RNAi
qPCR was used for detecting HaHMGR and Vg expression

levels. qPCR was performed using SsoFastTM EvaGreenH Super-

mix (Bio-Rad) according to the manufacturer’s instructions on a

BioRad iCycler iQ5 (Bio-Rad, Hercules, CA). The assays were

performed in triplicate. To avoid the disturbance of off-target

effects, the qPCR primers were designed to detect the outside part

of the dsRNA fragment. b-actin was chosen as an internal control

gene after validation. The relative gene expression data were

Figure 4. Effects of Helicoverpa armigera HMGR (HaHMGR) RNA interference (RNAi) on the oviposition of H. armigera. Twenty dsRNA-
treated or nuclease-free water-treated females were mated with untreated males in cages (40 cm630 cm630 cm). The enhanced green fluorescent
protein double-stranded RNA (dsEGFP) treatment group was used as a negative control. Nuclease-free water was used as a blank control. Histograms
represent the average oviposition per female. Values with the same letter are not significantly different at the P.0.05 level (ANOVA followed by
Tukey’s post-hoc test).
doi:10.1371/journal.pone.0067732.g004

Table 2. Effect of dsHaHMGR on fecundity, larval production and number of spermatophores in Helicoverpa armigera.

blank control dsEGFP-treated (negative control) dsHaHMGR-treated

Proportion of valid mating 53.33% 46.67% 0

Fecundity 1137.636241.50a 1113.006141.29a 0b

Number of larvae emerging 493.636212.90a 422.00656.79a 0b

Proportion of larvae emerging 0.4360.13a 0.3760.08a -

Number of spermatophores 1.7160.71a 2.2060.90a 0b

Two-day-old female pupae were treated with 1 mg of HaHMGR double-stranded RNA (dsHaHMGR) or enhanced green fluorescent protein double-stranded RNA
(dsEGFP) (negative control). One female treated with dsRNA (dsHaHMGR or dsEGFP) was paired with an untreated male in a small cage (N = 30). Values are expressed in
absolute terms as a percentage or as the mean 6 SD. Values with the same letter are not significantly different at the P.0.05 level (ANOVA followed by Tukey’s post-
hoc test).
doi:10.1371/journal.pone.0067732.t002
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analyzed using ANOVA and Tukey’s post-hoc test for multiple

comparisons.

Semi-field Trials
To verify the above results in the laboratory, semi-field cage

tests were conducted to compare the number of laying eggs and

hatched larvae after dsHaHMGR treatment as compared to the

control. Twenty pairs of moths were released in a screened

quarantine cage (2 m62 m62 m) located in a greenhouse, which

contained four mature cotton plants. The experiments were

performed in triplicate.

Results

Cloning of HaHMGR and Vg
A 2,408-bp fragment of the HaHMGR gene was amplified from

all individuals and cloned to obtain the full-length cDNA. This

gene fragment shared a high homology with A. ipsilon, B. mori, and

S. cynthia ricini HMGR genes in sequence alignment. The 2,408-bp

fragment of H. armigera showed 83%, 71% and 70% similarity with

A. ipsilon, B. mori, and S. cynthia ricini, respectively. A 187-bp

fragment was cloned by the 59-RACE method, and a 735-bp

fragment was cloned by the 39-RACE method, which allowed

identification of the stop codon (TAA). These methods resulted in

the cloning of a 3,329-bp full-length cDNA (GenBank accession

no. GU584103) of the HaHMGR gene. This cDNA contained a

187-bp 59-UTR, 2,514-bp ORF, and 628-bp 39-UTR, and it

encoded 837 amino acids.

A 5,129-bp fragment of a presumed Vg homologue of H.

armigera was obtained by PCR with degenerate primers and cDNA

prepared from the total RNA of a female moth as a template. The

use of RACE methods allowed a 5,636-bp sequence to be obtained

(GenBank accession no. JQ723600), and this sequence encoded a

1,756-aa protein with a predicted molecular mass of 193.2 kDa. A

BLAST database search indicated that the protein was the H.

armigera homologue of Vg. The amino acid sequence was highly

conserved showing high percentages of identity to other Vg

proteins, including S. litura (71%), B. mori (56%) and Nasonia

vitripennis (26%).

Sequence Alignments and Comparative Analysis
The protein sequence of HaHMGR showed 54–98% similarity

with other species. The maximal similarity was observed with A.

ipsilon, which was the closest phylogenetic relative with 95% and

98% similarity for positivity and identity, respectively. Bootstrap

values were high in all nodes, and the topology was consistent with

the current known phylogenies based on other genes. Regarding

the insect species, Lepidoptera and Diptera clustered in phyloge-

netically coherent groups (Fig. 1).

Relative Expression of HaHMGR and Vg mRNA in pupae
and Effects of RNAi on HaHMGR and Vg Transcription

The efficiency of qPCR for b-actin, HaHMGR and Vg were

qualified (Fig. S1). The relative expression levels of HaHMGR and

Vg mRNA in the pupae of H. armigera females waved from day 1 to

day 9 (Fig. 2). The maximal value for the relative expression of Vg

mRNA occurred in the 5-day-old pupa, whereas the peak of the

expression of HaHMGR emerged in the 4-day-old pupa.

To validate the silencing effects of the RNAi fragments, H.

armigera gene expression was detected by qPCR. qPCR results

showed that the expression levels of HaHMGR from the injected

female moths were significantly decreased compared to the

controls (Fig. 3A). In addition, the transcription level of Vg

mRNA in the injected female moths was also significantly reduced

(Fig. 3B). However, there was no difference in the relative

expression of HaHMGR or Vg in dsEGFP-injected moths

compared to the blank control group.

Effects of HaHMGR RNAi in H. armigera
To study the regulatory role of HaHMGR, the expression of

HaHMGR was lowered using systemic RNAi. The eggs laid by

dsHaHMGR-, dsEGFP- and blank control-treated females were

collected and examined. In the dsHaHMGR-treated group, the

egg production of each female was significantly reduced. There

was a 98% decrease in egg production when 1 mg of dsHaHMGR

was injected into the abdomen of 2-day-old female pupae

compared to the blank control. However, there was no effect on

egg production for the dsEGFP-treated group and blank control

group (Fig. 4). The one-pair experiments demonstrated that both

the proportion of valid mating and fecundity were zero. No

spermatophores were observed in the dsHaHMGR-treated group

(Table 2).

Semi-field Trials
The semi-field cage experiments showed the same results in the

dsHaHMGR-treated group, which was consistent with the results

in the laboratory. Oviposition was decreased by approximately

99% after dsHaHMGR treatment in a cage located in a

greenhouse (Table 3). There were no hatched larvae in the cotton

plants after dsHaHMGR treatment.

Discussion

In the present study, HaHMGR was cloned and characterized

as the HMGR homologue from the cotton bollworm, H. armigera.

This is the first report that used RNA interference to demonstrate

the regulatory role of the HaHMGR gene on the oviposition of H.

armigera. The results clearly suggested that silencing of the

HaHMGR gene influenced the fecundity of the females and

effectively reduced the oviposition in H. armigera. Silencing the

HaHMGR gene also decreased the levels of vitellogenin mRNA

expression.

Table 3. Fecundity and number of emerging Helicoverpa armigera larvae in the greenhouse cage trial.

dsEGFP-treated (negative control) dsHaHMGR-treated

Fecundity 901.006184.01a 8.6764.04b

Number of larvae emerging 152.67639.70a 0b

Twenty pairs of moths were released in a screened quarantine cage (2 m62 m62 m) located in a greenhouse, which contained four mature cotton plants. The total
number of eggs or larvae was recorded. Values are expressed in absolute terms as the mean 6 SD. Values with the same letter are not significantly different at the
P.0.05 level (ANOVA followed by a t-test).
doi:10.1371/journal.pone.0067732.t003

RNAi of the HMGR Gene in the Helicoverpa armigera
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The HaHMGR gene showed the characteristic genetic organi-

zation of HMGR enzymes, which was confirmed by the following

criteria: (i) the cDNA yielded an amino acid sequence showing

98%, 90% and 88% homology with A. ipsilon, B. mori and S. cynthia

ricini sequences, respectively [22,23,24]; (ii) the hydrophobicity plot

of the protein (from cDNA) showed classical organization of

animal-type HMGR with a N-terminal region containing the

potential membrane-spanning domains followed by a short linker

that connects the C-terminal region containing the catalytic

domain [29]; (iii) eight membrane-spanning domains were present

in the hydrophobicity plot, which was consistent with other

animal-type HMGR sequences [30]; and (iv) the catalytic domain

in the C-terminal region included His809, which is known to be a

conserved region in all HMGR sequences characterized to date

[31].

Importantly, the relative levels of HaHMGR mRNA exhibited

a significant increase in 4-day-old female pupae. Based on this

result, 2-day-old female pupae were treated by injecting dsRNA of

the target gene to determine the efficiency of RNAi in moths at

this developmental stage.

Because RNAi is a knockdown method, silencing is not

complete, and the effect is transient [32]. The life stage of insects

is one of the important factors that influences the silencing effect

[4]. We conducted experiments to choose the appropriate life

stage in this moth for silencing the target gene. For example, no

silencing effect was observed in the adult moth after treating 5th

instar larvae of H. armigera with HaHMGR dsRNA by injection

(1 mg) or feeding in the larval diets (10 mg) (unpublished results). A

previous report has also shown that feeding long dsRNA to H.

armigera larvae is not successful [33]. In contrast, a strong silencing

effect was observed in female moths after injecting dsRNA into 2-

day-old female pupae.

The present results suggested that HaHMGR RNAi treatment

effectively inhibited oviposition in H. armigera compared to the

control. HMGR was the first gene to be cloned in the mevalonate

pathway [28], and it is also the most widely studied gene in this

pathway in insects [24–28,34,35] because of its potential

regulatory role in the production of JH in insects. It is likely that

the knockdown of HaHMGR decreases the biosynthesis of JH and

then reduces the expression of vitellogenins. In response to the

suppression of JH, the mevalonate pathway can also produce other

final products, such as dolichol, which behaves as a donor of

oligosaccharide residues in the glycosylation of proteins, e.g., in the

synthesis of vitellogenins in most insect species. In this case,

HaHMGR RNAi may also result in suppression of the production

of dolichol, thereby further affecting oogenesis. Importantly, no

valid mating of the dsHaHMGR-treated group occurred in the

laboratory one-pair experiments. A previous study has reported

that compactin (HMGR inhibitor) clearly inhibits sex pheromone

biosynthesis in the silkworm (B. mori) and the common cutworm (S.

litura) [36]. The lack of valid mating of the dsHaHMGR-treated

group may have resulted from the decreased biosynthesis of sex

pheromone in H. armigera. Further studies are needed to investigate

the common mechanisms underlying the basal regulation role of

HMGR in insects for potential pest control applications using

RNAi.

The larvae of H. armigera feed on a wide range of economically

important crops and cause a tremendous loss in yield. Although

transgenic Bt plants have proven to be successful in controlling this

pest, sporadic cases of development of resistance against Bt toxin

may jeopardize this accomplishment [37]. Therefore, it is

necessary to develop alternate and novel strategies to control this

pest. The present results demonstrated that the HaHMGR gene

can be a potential target for effective insect control. Releasing

female moths that have been molecularly sterilized by silencing the

HaHMGR gene shows considerable promise against this pest and

other similar insect pests. In the present study, semi-field trials in

cages demonstrated great success for controlling H. armigera by

demonstrating their failure to produce fertile progeny. In addition,

the currently available data suggests that insect-resistant transgenic

plants generated using plant RNAi-mediated silencing of the insect

HaHMGR gene may also represent a novel strategy against insect

pests.

Supporting Information

Figure S1 The qPCR efficiency data graphs for b-actin,
Helicoverpa armigera HMGR (HaHMGR) and vitello-
genin. We made 10 times diluted concentration gradient for the

standard sample. Three repeats for each concentration gradient.

(A) The standard curve of the b-actin in qPCR. The amplification

efficiency was 103.66%. (B) The standard curve of the HaHMGR

in qPCR. The amplification efficiency was 95.93%. (C) The

standard curve of the vitellogenin in qPCR. The amplification

efficiency was 98.34%.

(TIF)
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